IDADE E CRESCIMENTO DA SERRA, SCOMBEROMORUS BRASILIENSIS, NO ESTADO DO CEARÁ (BRASIL) (1)

Maria Odete Carneiro Ximenes

Laboratório de Ciências do Mar
Universidade Federal do Ceará
Fortaleza – Ceará – Brasil

A serra, espécie da família Scombridae, anteriormente designada como Scomberomorus maculatus (Mitchill), com distribuição ao longo do Atlântico Ocidental na área correspondente à América do Sul, foi recentemente reconhecida como sendo uma nova espécie — Scomberomorus brasiliensis Collette & Russo, 1978 —, com base no trabalho realizado por Collette et al. (1978).

Por sua importância econômica, como produto de elevado consumo interno e destaque no sistema de pesca artesanal, a serra tem sido objeto de números trabalhos por este Laboratório de Ciências do Mar. O cálculo da curva de crescimento, um dos importantes componentes da dinâmica populacional, foi levado a efeito pela última vez por Nomura (1967), de modo que havia necessidade de atualizar as estimativas do comprimento máximo teórico (L_{∞}) e do coeficiente de crescimento (K), parâmetros que variam com o tempo e com a intensidade do esforço de pesca.

Este trabalho apresenta estimativas dos parâmetros do crescimento individual da serra, com base em amostras recentes, comparando-os com os resultados obtidos anteriormente por Nomura (op. cit.).

MATERIAL E MÉTODOS

Os dados que servem de base para este trabalho foram coletados das capturas realizadas em frente aos municípios de Aquiraz (3º53’S — 38º21’W) e Acaraú (2º05’S — 40º02’W), durante o período de agosto de 1976 a maio de 1981. Foram amostrados 301 indivíduos (108 machos e 193 fêmeas), retirando-se os otolitos (sagittae) e registrando-se o comprimento zoológico e o sexo.

Em laboratório, os otolitos foram guardados a seco em envelopes codificados e, posteriormente, examinados com uma lupa binocular de iluminação direta. Em contraste com o fundo escuro, as zonas opacas aparecem como anéis brancos ou claros e as zonas hialinas, como anéis escuros, tendo-se escolhido os primeiros como marcas de identificação dos grupos-de-idade a que pertencia o indivíduo em diferentes épocas de sua vida.

A leitura dos anéis etários foi feita através de uma escala micrométrica adaptada à ocular, tomando-se a medida do foco à margem do otolito e das distâncias de cada anel ao foco.

O comprimento do otolito (Y) está correlacionado ao comprimento zoológico do indivíduo (X) através da equação de regressão:

\[Y = 0,667 + 0,066 \times (r = 0,93**) \]
cuja significância estatística permite o uso da fórmula do retro-cálculo:

\[L' = \frac{S'}{S} L \]

onde: \(L' \) é o comprimento zoológico do peixe no momento da formação de um anel; \(S' \) é a distância entre o foco do otolito a cada anel; \(S \) é o comprimento do otolito; e \(L \) é o comprimento zoológico do peixe examinado.

CURVA DE CRESCIMENTO

Utilizamos a equação de von Bertalanffy (1938):

\[L_t = L_\infty - (L_\infty - L_0) e^{-Kt} \]

modificada por Beverton & Holt (1957) para:

\[L_t = L_\infty [1 - e^{-K(t-t_0)}] \]

em que o parâmetro \(L_0 \) desaparece e um novo \(t_0 \) aparece, o qual tem um significado especial — uma idade \(t_0 \) em que o indivíduo terá comprimento zero, se mantiver o mesmo padrão de crescimento durante toda sua vida.

Utilizamos a transformação Ford-Walford, que determina a relação entre os comprimentos \(L_t \) num instante \(t \) e \(L_{t + \Delta t} \) num instante \(t + \Delta t \). No presente trabalho consideramos \(\Delta t \) igual a 1 ano.

Portanto,

\[L_{t + 1} = L_\alpha (1 - e^{-K}) + e^{-K} L_t \]

que permite determinar o valor de \(L_\alpha \), quando \(L_\alpha = L_t \).

De acordo com o desenvolvimento proposto por Santos (1978), considerando a idade da primeira mensuração como sendo igual a zero, e uma idade média relativa \(t^* \), que os indivíduos

| TABELA I |

<table>
<thead>
<tr>
<th>Grupo-de-idade</th>
<th>Comprimento na captura (cm)</th>
<th>n</th>
<th>Comprimento retro-calculado (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>MACHOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>39,2</td>
<td>3</td>
<td>26,1</td>
</tr>
<tr>
<td>II</td>
<td>45,5</td>
<td>51</td>
<td>23,1</td>
</tr>
<tr>
<td>III</td>
<td>51,4</td>
<td>31</td>
<td>23,0</td>
</tr>
<tr>
<td>IV</td>
<td>56,8</td>
<td>18</td>
<td>22,2</td>
</tr>
<tr>
<td>V</td>
<td>63,7</td>
<td>5</td>
<td>22,4</td>
</tr>
<tr>
<td>Comprimento médio (cm)</td>
<td></td>
<td></td>
<td>23,4</td>
</tr>
<tr>
<td>Incremento médio (cm)</td>
<td></td>
<td></td>
<td>12,4</td>
</tr>
<tr>
<td>FÉMEAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>39,2</td>
<td>11</td>
<td>25,8</td>
</tr>
<tr>
<td>II</td>
<td>48,6</td>
<td>41</td>
<td>26,8</td>
</tr>
<tr>
<td>III</td>
<td>53,0</td>
<td>69</td>
<td>24,1</td>
</tr>
<tr>
<td>IV</td>
<td>60,5</td>
<td>51</td>
<td>24,3</td>
</tr>
<tr>
<td>V</td>
<td>67,9</td>
<td>14</td>
<td>24,0</td>
</tr>
<tr>
<td>VI</td>
<td>72,7</td>
<td>7</td>
<td>25,8</td>
</tr>
<tr>
<td>Comprimento médio (cm)</td>
<td></td>
<td></td>
<td>25,1</td>
</tr>
<tr>
<td>Incremento médio (cm)</td>
<td></td>
<td></td>
<td>12,5</td>
</tr>
</tbody>
</table>
tinham na época de cada mensuração, a idade correta (t) será igual a:
\[t = t_1 + t^* \]
sendo \(t_1 \) a idade correta na primeira mensuração.

Portanto, a equação 1 fica:
\[
L_t = L_\infty [1 - e^{-K (t_1 + t^*) - t_0}].
\]
\[
\ln \left(\frac{L_\infty - L_t}{L_\infty} \right) = -K (t_1 - t_0) - Kt^* \tag{3}
\]

Da equação 3, obtém-se estimativas do coeficiente de crescimento (K) e de \(t_1 \), como
\[
K = -b
\]
\[
t_1 = \frac{a}{b} - t_0, \text{ para } t_0 = 0
\]

RESULTADOS E DISCUSSÃO

No período de tempo abrangido por este estudo foram identificados indivíduos pertencentes aos grupos-de-idade de I a V anos (machos) e I a VI anos (fêmeas) — tabela I —, enquanto que Nomura (1967), na mesma área mas no período janeiro-dezembro de 1966, trabalhou com indivíduos pertencentes aos grupos-de III a IX anos (machos) e III a X anos (fêmeas).

A fim de se verificar com que periodicidade se formam os anéis etários observados nos otolitos, os comprimentos médios trimestrais, por grupo-de-idade, foram lançados contra os trimestres, revelando uma certa inconsistência quanto à época exata de mudança da idade, mas com maior tendência para variação entre o primeiro e o segundo tri-
mestre do ano (tabela II; figura 1). Utilizando intervalos bimestrais, Nomura (op. cit.) chegou à conclusão de que a serra muda de idade entre janeiro-fevereiro e março-abril.

A largura da margem hialina, após o último anel, pode ser também usada como indicador da época de mudança da idade. A figura 2 mostra que houve uma diminuição gradativa da margem a partir de agosto atingindo seu mais baixo valor em março e aumentando bruscamente em abril, o que indica a formação de uma nova zona hialina neste mês.

A maneira da cavala, Scomberomorus cavalla, que tem o mesmo habitat da serra, a formação do anel no segundo trimestre está, provavelmente, relacionada com a ocorrência da desova nesta época (Gesteira & Mesquita, 1976).

![Figura 2 - Variação mensal da largura do anel hialino nos otolitos da serra, Scomberomorus brasiliensis.](image)

A regressão entre sucessivos valores do comprimento zoológico, em centímetros, por grupo-de-idade permitiu o cálculo das seguintes equações, com elevada significância estatística:

macho: \(L_t + 1 = 17,7 + 0,783 L_t \)

fêmea: \(L_t + 1 = 16,4 + 0,839 L_t \)

cujos coeficientes angulares \(b \) apresentaram diferença estatisticamente significante, exigindo o cálculo das curvas de crescimento para cada sexo, representadas pelas equações:

macho: \(L_t = 81,6 (1 - e^{-0,243t}) \)

\[t_1 = 1,4 \text{ ano} \]

fêmea: \(L_t = 101,9 (1 - e^{-0,176t}) \)

\[t_1 = 1,6 \text{ ano} \]

macho + fêmea:

\(L_t = 106,7 (1 - e^{-0,160t}) \)

\[t_1 = 1,6 \text{ ano} \]

As curvas de crescimento em peso (g) foram obtidas a partir das equações acima, utilizando-se as relações peso/comprimento determinadas por Nomura & Costa (1968):

macho: \(W_t = 4,287 (1 - e^{-0,243t}) \times 2,973 \)

fêmea: \(W_t = 8,726 (1 - e^{-0,176t}) \times 3,035 \)

macho + fêmea: \(9,786 (1 - e^{-0,160t}) \times 3,004 \)

TABELA II

Médias trimestrais do comprimento zoológico da serra, Scomberomorus brasiliensis, por grupo-de-idade anual, no período de agosto de 1976 a maio de 1981, no Estado do Ceará.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>23,2</td>
<td>21,5</td>
<td>22,9</td>
<td>24,3</td>
<td>24,6</td>
<td>23,6</td>
<td>25,4</td>
<td>25,1</td>
</tr>
<tr>
<td>II</td>
<td>38,0</td>
<td>32,6</td>
<td>36,2</td>
<td>37,8</td>
<td>37,5</td>
<td>36,4</td>
<td>38,2</td>
<td>37,9</td>
</tr>
<tr>
<td>III</td>
<td>45,9</td>
<td>41,3</td>
<td>46,7</td>
<td>47,6</td>
<td>47,1</td>
<td>46,1</td>
<td>48,4</td>
<td>47,3</td>
</tr>
<tr>
<td>IV</td>
<td>56,2</td>
<td>48,7</td>
<td>62,0</td>
<td>55,2</td>
<td>57,4</td>
<td>53,9</td>
<td>58,6</td>
<td>55,9</td>
</tr>
<tr>
<td>V</td>
<td>—</td>
<td>34,9</td>
<td>67,0</td>
<td>—</td>
<td>64,4</td>
<td>63,5</td>
<td>65,0</td>
<td>64,5</td>
</tr>
<tr>
<td>VI</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>69,5</td>
<td>67,8</td>
<td>69,2</td>
<td>77,1</td>
</tr>
</tbody>
</table>
As curvas de crescimento (tabela III; figuras 3 e 4) mostram que machos e fêmeas da serra crescem a taxas aproximadamente iguais até 4 anos, mas as fêmeas passam a crescer mais rápido a partir dessa idade. Este fato deve estar relacionado com a maturidade sexual, que as fêmeas atingem quando têm, em média, 41,0 cm de comprimento zoológico (Gesteira & Mesquita, 1976) e 3 anos de idade.

As diferenças nos parâmetros do crescimento entre a população da serra do Nordeste do Brasil e a encontrada na Flórida (E.U.A.), discutidas por Nomura (1967), são realmente bem marcantes, tanto quanto as verificadas entre as destes trabalhos e o de Powell (1975), que abrangem períodos de tempo mais recentes. Os valores do L\textsubscript{c} apresentam diferenças de até 32,6 cm e os coeficientes de crescimento são também bastante divergentes. Mesmo levando-se em conta as variações climáticas entre as duas regiões consideradas, este fator por si só não seria suficiente para determinar discrepâncias de tal ordem, a não ser que se tratasse de espécies diferentes, como é o caso. Para corroborar esta constatação, as populações de cavala das referidas regiões, comparadas por Ximenes et al. (1978), apresentam as maiores diferenças no coeficiente de crescimento, sendo que os valores do L\textsubscript{c} são relativamente próximos.

Estas observações podem, até certo ponto, ser relevantes para confirmar o fato de que a serra do Nordeste do Brasil é realmente uma espécie diferente daquela conhecida como S. maculatus, da Flórida, conforme já mencionado (Collette et al., 1978).

SUMMARY

English title: Age and growth of the Brazilian mackerel, Scomberomorus brasiliensis Collette & Russo, 1978 off northeastern Brazil.

In this paper an analysis is made of the length at age data for Brazilian mackerel with the aim of calculating its growth curves in length and weight and, at the same time, making comparisons with previous results obtained both in Brazil and Florida State, U.S.A.

Our data refer to the period from August, 1976 through May, 1981, sampled off Ceará State around positi-

<table>
<thead>
<tr>
<th>Grupos-de-idade</th>
<th>Idade média (ano)</th>
<th>Machos</th>
<th>Fêmeas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>comprimento médio (cm)</td>
<td>incremento (cm)</td>
<td>comprimento médio (cm)</td>
</tr>
<tr>
<td>0</td>
<td>0,5</td>
<td>9,3</td>
<td>8,5</td>
<td>8,2</td>
</tr>
<tr>
<td>I</td>
<td>1,5</td>
<td>24,9</td>
<td>23,6</td>
<td>22,7</td>
</tr>
<tr>
<td>II</td>
<td>2,5</td>
<td>37,1</td>
<td>36,2</td>
<td>35,2</td>
</tr>
<tr>
<td>III</td>
<td>3,5</td>
<td>46,8</td>
<td>46,8</td>
<td>45,8</td>
</tr>
<tr>
<td>IV</td>
<td>4,5</td>
<td>54,3</td>
<td>55,7</td>
<td>54,7</td>
</tr>
<tr>
<td>V</td>
<td>5,5</td>
<td>60,1</td>
<td>63,1</td>
<td>62,4</td>
</tr>
<tr>
<td>VI</td>
<td>6,5</td>
<td>64,8</td>
<td>69,3</td>
<td>68,9</td>
</tr>
<tr>
<td>VII</td>
<td>7,5</td>
<td>68,4</td>
<td>74,6</td>
<td>74,6</td>
</tr>
<tr>
<td>VIII</td>
<td>8,5</td>
<td>71,2</td>
<td>79,0</td>
<td>79,3</td>
</tr>
<tr>
<td>IX</td>
<td>9,5</td>
<td>73,5</td>
<td>82,7</td>
<td>83,3</td>
</tr>
<tr>
<td>X</td>
<td>10,5</td>
<td>75,2</td>
<td>85,7</td>
<td>86,8</td>
</tr>
<tr>
<td>XI</td>
<td>11,5</td>
<td>76,6</td>
<td>88,4</td>
<td>89,7</td>
</tr>
<tr>
<td>XII</td>
<td>12,5</td>
<td>77,7</td>
<td>90,5</td>
<td>92,3</td>
</tr>
<tr>
<td>XIII</td>
<td>13,5</td>
<td>78,5</td>
<td>92,3</td>
<td>94,4</td>
</tr>
</tbody>
</table>

TABELA III

The growth curves in length (cm) and weight (g) are:

males: \[L_t = 81.6 \left(1 - e^{-0.243t} \right) \]

\[W_t = 4.287 \left(1 - e^{-0.243t} \right)^2 2.973 \]

females: \[L_t = 101.9 \left(1 - e^{-0.176t} \right) \]

\[W_t = 8.726 \left(1 - e^{-0.176t} \right)^3 3.035 \]

The growth curves in length show that males and females grow at roughly equal rates up to 4 years of age, but females start growing at higher rates thence what is supposed be due to the attainment of sexual maturity.

Large differences between the populations of northeastern Brazil and Florida, concerning the maximum theoretical length (\(L_\infty \)) and the growth coefficient (K), reinforce the already established status of different species for *S. maculatus* (Florida) and *S. brasiliensis* (Brazil).

Figura 3 – Curvas de crescimento em comprimento da serra, *Scomberomorus brasiliensis*.
Figura 4 — Curvas de crescimento em peso da serra, *Scomberomorus brasiliensis*.

BIBLIOGRAFIA

